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Abstract

A range of polysubstituted tetrahydropyrans can be readily assembled by a novel methodology involving
a metallo-ene reaction coupled with an intramolecular Sakurai cyclisation (IMSC) # 2000 Elsevier Science
Ltd. All rights reserved.
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Numerous biologically active natural products contain, embedded in their complex
architectural framework, a polysubstituted tetrahydropyran subunit. The widespread occurrence
of tetrahydropyrans, coupled with their key role as pharmacophores, has stimulated the
development of a plethora of elegant methodologies for their stereocontrolled assembly.1 As part
of a synthetic programme aimed at the e�cient preparation of tetrahydropyran-containing
natural products, we required a rapid, stereocontrolled and stereodivergent route to the three
diastereomeric diols 1±3 (Fig. 1).

In a previous communication, we have reported on a novel, three-component methodology,
that provided us with an easy access to isomerically pure tetrahydropyrans 1 and 2.2 This
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protocol involves an initial, abnormal, ene reaction between allylsilane 4 and an aldehyde, a�ording
silylenol ether 5 solely as the (E)-geometric isomer.3 Subsequent intramolecular cyclisation via
oxocarbenium ion 7 generated diastereomerically pure exo-methylene tetrahydropyran 6. The
2,3-anti, 2,6-syn-stereochemistry derived from the preferred pseudo-equatorial arrangement of
the substituents in intermediate 7. Oxidative cleavage of the exocyclic C±C double bond, followed
by stereoselective reduction with the appropriate hydrides, ultimately provided diols 1 and 2 in
high overall yields (Fig. 2).4

Unfortunately, the subsequent transformation of 1 or 2 into isomer 3 proved to be lengthy and
cumbersome. We envisioned that a rapid access to the desired tetrahydropyrans 3 could be
realised starting from the (Z)-isomer of enol ether 5. In this article, we wish to report our
preliminary results on the successful implementation of this strategy.
With the desired (Z)-silylenol ethers being unattainable by the previous methodology, we

selected the corresponding carbamate derivatives 10. These compounds should be readily
available by the the elegant allyl-metallation protocol reported by Hoppe (Fig. 3).5

Thus, allyl alcohol 8 was transformed into carbamate 9 by condensation with diisopropyl
carbamoyl chloride in excellent yield. Metallation of 9 proved unexpectedly di�cult and
proceeded only under the conditions described in Fig. 3. Gratifyingly, addition of Ti(OPri)4 to a
solution of the in situ generated allyllithium reagent, followed by an aldehyde led in high yield to
the desired (Z)-enolcarbamate 10 as a single geometric isomer.6 A collection of representative
examples is displayed in Table 1.
Primary, secondary and tertiary aliphatic aldehydes reacted smoothly (Entries 1±3) and so did

unsaturated aldehydes (Entry 4). Whilst in some cases, the allylation reaction displayed complete
diastereoselectivity (Entry 5), in other cases, it proceeded with modest stereocontrol (Entry 6).

Figure 2.

Figure 3.
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With ready access to the desired (Z)-enolcarbamates at hand, we next turned our attention to
the crucial intramolecular Sakurai cyclisation (IMSC).7 To the best of our knowledge, the IMSC
reactions of substrates such as 10 have never been reported before.
After some experimentation, we were delighted to ®nd that, in the presence of BF3

.Et2O, a
range of enol carbamates smoothly underwent IMSC condensation with a variety of aldehydes,
a�ording the corresponding exo-methylene tetrahydropyrans 11 in excellent yields. Even more
pleasing was the obtention, in all cases, of a single diastereoisomer possessing the expected
C3-axial alkoxy-substituent (Table 2).
The presence of the C3-substituent in the axial position was clearly revealed by comparing the

values of the coupling constants between the previously prepared, equatorially disposed, pyran
derivative 13 with the newly obtained axial isomer 12 (Fig. 4).8

Subsequent transformations of 12 into diols such as 3 proceeded smoothly. Ozonolysis of the
exo-methylene double bond a�orded ketone 14 which was reduced by L-Selectride1, providing
the syn-hydroxycarbamate 15 as a single diastereoisomer. Deprotection of the carbamate
function was accomplished smoothly using LiAlH4.

9 It is interesting to note that these two separate
operations could be e�ciently combined in a single step. Indeed, treatment of ketocarbamate 14
with LiAlH4 not only resulted in the stereoselective reduction of the ketone function but also in the
unravelling of the protecting group, a�ording directly syn-diol 16 in 98% overall yield (Fig. 5).

Table 1
Metallo-ene reaction of allylcarbamate 9
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In summary, we have developed an e�cient and stereocontrolled access to a variety of
polysubstituted tetrahydropyrans by a unique combination of the Hoppe allylmetallation of the
novel carbamate derivative 9 with an intramolecular Sakurai cyclisation.10 The tetrahydropyran
derivatives 11, obtained by this methodology, are stereocomplementary to those prepared earlier
according to our previously reported ene-IMSC protocol.

Table 2
Intramolecular Sakurai cyclisation of enol carbamates

Figure 4.
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